Characterization of sodium transport in gustatory epithelia from the hamster and rat.

نویسندگان

  • T A Gilbertson
  • H Zhang
چکیده

The transduction of sodium salts occurs through a variety of mechanisms, including sodium influx through amiloride-sensitive sodium channels, anion-dependent sodium movement through intercellular junctions and unidentified amiloride-insensitive mechanisms. Characterizations of sodium transport in lingual epithelium mounted in Ussing chambers have focused almost exclusively on epithelia containing only fungiform taste buds. In the present study we have investigated sodium transport by measuring NaCl-induced short-circuit current from lingual epithelia containing fungiform, foliate, vallate and palatine taste buds in the hamster and the rat. All areas show measurable sodium transport, yet significant differences were noted between the epithelia from the rat and the hamster and among the different epithelia within a single species in terms of current density, transepithelial resistance and mucosal amiloride sensitivity. In general, epithelia from the anterior tongue were of a lower resistance and transported sodium more effectively than from the posterior tongue. Moreover, fungiform- and vallate-containing epithelia in the rat had a greater current density than did the corresponding tissues in the hamster. Amiloride sensitivity also differed between the rat and the hamster. In the hamster all gustatory areas showed some amiloride sensitivity, while in the rat the vallate-containing epithelia were devoid of amiloride-sensitive sodium transport. The results are consistent with the interpretation that all chemosensitive areas may participate in the detection of salts but the degree of salt transport and the mechanism of transport is variable among different lingual epithelia and different species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Titanium on Oleic Acid Transport in Rat EGS

Ani M1, Moshtaqi AA1, Ahmadvand H2 1. Assistant Professor, Department of Clinical Biochemistry, Faculty of pharmacy, Isfahan University of Medical Sciences 2. Assistant Professor, Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences Abstract Background: There are reports indicating that fatty acid transport is affected by many biochemical paramete...

متن کامل

Isolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12

We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...

متن کامل

Molecular characterization of volume-sensitive SK(Ca) channels in human liver cell lines.

In human liver, Ca(2+)-dependent changes in membrane K(+) permeability play a central role in coordinating functional interactions between membrane transport, metabolism, and cell volume. On the basis of the observation that K(+) conductance is partially sensitive to the bee venom toxin apamin, we aimed to assess whether small-conductance Ca(2+)-sensitive K(+) (SK(Ca)) channels are expressed en...

متن کامل

The active ion transport properties of canine lingual epithelia in vitro. Implications for gustatory transduction

The electrophysiological properties of the dorsal and ventral canine lingual epithelium are studied in vitro. The dorsal epithelium contains a special ion transport system activated by mucosal solutions hyperosmotic in NaCl or LiCl. Hyperosmotic KCl is significantly less effective as an activator of this system. The lingual frenulum does not contain the transport system. In the dorsal surface i...

متن کامل

Self-Inhibition in Amiloride-sensitive Sodium Channels in Taste Receptor Cells

Electrophysiological recording techniques were used to study the Na+ dependence of currents through amiloride-sensitive sodium channels (ASSCs) in rat taste cells from the fungiform and vallate papillae. Perforated patch voltage clamp recordings were made from isolated fungiform and vallate taste receptor cells (TRCs) and Na+ transport was measured across lingual epithelia containing fungiform ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical senses

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 1998